Math 3D MT Solutions

July 6, 2016
Aaron Chen

1) Solve $y y^{\prime}+x=0, y(3)=-4$.

Solution. There's a couple perspectives.

1) Separate the equation into $y y^{\prime}=-x$, which in Leibniz notation is $y \frac{d y}{d x}=-x$ so then

$$
y d y=-x d x \longrightarrow \frac{y^{2}}{2}=-\frac{x^{2}}{2}+C .
$$

Because C is just a constant, we can just simplify the equation into

$$
y^{2}=-x^{2}+D
$$

Solving for the constant, we have $(-4)^{2}=-\left(3^{2}\right)+D$, so $D=16+9=25$. Then,

$$
y^{2}=25-x^{2} \longrightarrow y= \pm \sqrt{25-x^{2}} .
$$

Since the initial condition lies on $x=3$ with $y=-4$, we will take the (-) branch! Also, we need the square root to be non-negative, $25-x^{2} \geq 0$ which tells is $x^{2} \leq 25,|x| \leq 5$. Hence,

$$
y=-\sqrt{25-x^{2}}, \quad \text { Domain of Validity: }(-5,5)
$$

2) Substitute $v=y^{2}$: So then $\frac{v^{\prime}}{2}+x=0 \Longleftrightarrow v^{\prime}=-2 x$. This is separable again,

$$
v=-x^{2}+C .
$$

Plugging back in for $v=y^{2}$, we have the same result $y^{2}=-x^{2}+C$ (with just a renamed constant). The rest of the 1st solution follows from here (continue from where $y^{2}=-x^{2}+D$ above).

Grading Checks (needed to show work):
. Separating or using substitution to start the problem and get a general solution
. Solving for the constant
. Solving for y explicitly and choosing the (-) branch
. Finding the domain of validity.
2) General solution to $y^{\prime}+\tan (x) y=\cos (x)$.

Solution. This is an integrating factor problem, with $R(x)=e^{\int \tan x d x}=e^{\ln |\sec x|}$. You may have remembered/memorized that $\int \tan x d x=\ln |\sec x|$. But this is why:

$$
\begin{gathered}
\int \tan x d x=\int \frac{\sin x}{\cos x} d x, \quad \text { Use } u=\cos x, d u=-\sin x d x, \\
=\int \frac{-d u}{u}=-\ln |u|, \quad \text { Plug back } u=\cos x, \\
=-\ln |\cos x|=\ln \left|[\cos x]^{-1}\right|=\ln |1 / \cos x|
\end{gathered}
$$

$$
=\ln |\sec x|+C
$$

where we don't include the constant for the integrating factor (or rather, we set $C=0$ because it doesn't matter). Thus,

$$
R(x)=e^{\int \tan x d x}=e^{\ln |\sec x|}=|\sec x|=\frac{1}{|\cos x|}
$$

Using this as our integrating factor, we remember that first multiply $R(x)$ to both sides,

$$
\frac{y^{\prime}}{|\cos x|}+\frac{\sin x}{\cos x|\cos x|} y=\frac{\cos x}{|\cos x|} .
$$

Here, we note that regardless of the branch of absolute value we take, the sign is always going to cancel! For example, if we used $|\cos x| \rightarrow-\cos x$, the minus sign just cancels everywhere. Thus, we can just omit the absolute values,

$$
\frac{y^{\prime}}{\cos x}+\frac{\sin x}{\cos ^{2} x} y=1
$$

Recalling that the integrating factor induces a product rule,

$$
\frac{d}{d x}\left[\frac{1}{\cos x} y\right]=1 \Longrightarrow \frac{y}{\cos x}=x+C
$$

Hence, our general solution is

$$
y(x)=(x+C) \cos x .
$$

Grading Checks:
. Using integrating factor (correctly)
. Finding the integral of tangent for the integrating factor
. Clarifying why the sign is always positive
. Correct general solution

3) General solution to $y^{\prime}=\frac{y+x e^{-y / x}}{x}$.

Solution. We notice that we should use the substitution $v=y / x$ as a homogeneous equation because the right hand side looks like some $F(y / x)$. We then recall that

$$
v=y / x \Longleftrightarrow y=x v, \longrightarrow y^{\prime}=x v^{\prime}+v
$$

So our ODE becomes

$$
x v^{\prime}+v=v+e^{-v} \Longleftrightarrow x v^{\prime}=e^{-v} .
$$

This is now separable, with Leibniz notation this reads as

$$
e^{v} \frac{d v}{d x}=\frac{1}{x} \Longleftrightarrow e^{v} d v=\frac{d x}{x}
$$

Integrating,

$$
\int e^{v} d v=\int \frac{d x}{x}+C \longrightarrow e^{v}=\ln |x|+C
$$

Thus, $v=\ln (\ln |x|+C)$ where plugging in that $v=y / x$, we have that our general solution is

$$
y(x)=x \ln (\ln |x|+C) .
$$

Grading Checks:
. Using the homogeneous substitution
. Correctly solving using the substitution (separation + integration)
. Plugging back in $v=y / x$ and getting the correct general solution
4) Solve $y^{\prime \prime}+4 y^{\prime}+10 y=0$ with initial conditions $y(0)=3, \quad y^{\prime}(0)=-2$.

Solution. Starting out with the auxiliary (characteristic) equation from assuming $y=e^{r x}$, we have

$$
r^{2}+4 r+10=0
$$

If you factored this: You get $(r+2)^{2}+6=0$ so then $r=-2 \pm i \sqrt{6}$.
Use the quadratic formula:

$$
r=\frac{-4 \pm \sqrt{16-40}}{2}=\frac{-4 \pm \sqrt{-24}}{2}=-2 \pm i \sqrt{6} .
$$

Either way, we can now read the general solution:

$$
y(x)=e^{-2 x}\left[A_{1} \cos (\sqrt{6} x)+A_{2} \sin (\sqrt{6} x)\right] .
$$

We now solve for the constants with the initial conditions. First,

$$
y(0)=3: \quad 3=e^{0}\left[A_{1} \cos (0)+A_{2} \sin (0)\right] \Longleftrightarrow 3=A_{1} .
$$

To get A_{2} we need to differentiate (and don't forget we can plug in for A_{1} too):

$$
y^{\prime}(x)=-2 e^{-2 x}\left[3 \cos (\sqrt{6} x)+A_{2} \sin (\sqrt{6} x)\right]+e^{-2 x}\left[-3 \sqrt{6} \sin (\sqrt{6} x)+\sqrt{6} A_{2} \cos (\sqrt{6} x)\right]
$$

so now we can use our other initial condition,

$$
y^{\prime}(0)=-2: \quad-2=-2[3]+\left[\sqrt{6} A_{2}\right] \Longleftrightarrow 4=\sqrt{6} A_{2} \Longleftrightarrow A_{2}=\frac{4}{\sqrt{6}} .
$$

Thus, our solution after plugging in these constants is

$$
y(x)=e^{-2 x}\left[3 \cos (\sqrt{6} x)+\frac{4}{\sqrt{6}} \sin (\sqrt{6} x)\right] .
$$

Grading Checks:
. Getting and solving the auxiliary equation
. Correct general solution from the roots of the auxiliary equation
. Solving for both of the constants using both of the initial conditions

